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Abstract

A simple score test of the normal two-parameter logistic (2PL) model is presented that examines

the potential attraction of the normal three-parameter logistic (3PL) model for use with a

particular item. Application is made to data from a test from the Praxis
TM

series. Results from

this example raise the question whether the normal 3PL model should be used routinely in

preference to the normal 2PL model unless evidence exists that a substantial gain in description

of data is achieved.
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A simple variation on the traditional score test (Rao, 1973, p. 418) can be derived to check if

the three-parameter logistic (3PL) model is an attractive alternative to the two-parameter logistic

(2PL) model without actually fitting a 3PL model. This test is derived in Section 1.. In Section 2.,

its use is considered for data from the Praxis
TM

series of examinations. Implications of results for

psychometric practice are considered in Section 3.. Although the specific application considered

here does not appear to be readily found in the literature, similar attempts at model diagnosis

have been employed in the past to detect other departures from the 2PL model (Glas, 1999).

Throughout this report, n ≥ 1 examinees each take a test with q ≥ 3 items, a random variable

Xij is 1 if item j is answered correctly by examinee i, and Xij is 0 if item j is not answered

correctly. Each vector Xi of responses Xij , 1 ≤ j ≤ q, is independent and identically distributed.

The set Γ of possible values of Xi consists of all q-dimensional vectors such that each coordinate

is 0 or 1. The distribution of X is characterized by the array p of probabilities

p(x) = P (Xi = x)

for x in Γ, so that p is in the simplex T of arrays r with nonnegative elements r(x), x in Γ, with a

sum of 1. The log likelihood function at r in T is then

`(r) =
n∑

i=1

log r(Xi),

and

Ĥ(r) = −(nq)−1`(r)

estimates the expected log penalty per item

H(r) = −q−1E(log r(X1))

from probability prediction of X1 by use of r. For a nonempty subset S of T , the maximum log

likelihood `(S) of `(r) for r in S then leads to the minimum estimated expected log penalty per

item Ĥ(S) = −(nq)−1`(S) of Ĥ(r) for r in S (Gilula & Haberman, 1994, 1995). Here Ĥ(S) is an

estimate of the minimum expected log penalty per item H(S) of H(r) for r in S. A member p̂ of

S is a maximum-likelihood estimate of the probability array p (relative to S) if `(p̂) = `(S).

In both the 2PL and 3PL models (Bock & Aitkin, 1981; Bock & Lieberman, 1970; Hambleton,

Swaminathan, & Rogers, 1991), a random ability variable θi is associated with each examinee i,

and the Xij , 1 ≤ j ≤ q, are conditionally independent given θi. The pairs (θi,Xi) are independent
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and identically distributed, and the distribution function of θi is D. In this report, the simple case

will be considered in which D is assumed equal to the standard normal distribution function Φ.

For each item j, the conditional probability Pj(θ) that Xij = 1 given θi = θ is positive and less

than 1, so that Qj(θ) = 1 − Pj(θ) is also positive and less than 1. The function Pj is the item

characteristic curve, and

λj = log(Pj/Qj)

is the item logit function (Holland, 1990), so that

Pj =
exp(λj)

1 + exp(λj)
(1)

and

Qj =
1

1 + exp(λj)
. (2)

Let λ have coordinates λj for 1 ≤ j ≤ q, and let

u′v =
q∑

j=1

ujvj

for q-dimensional vectors u and v with respective coordinates uj and vj for 1 ≤ j ≤ q. For

V =
q∏

j=1

Qj =
q∏

j=1

1
1 + exp(λj)

, (3)

a variation on the Dutch identity yields

p(x) =
∫

V exp(X′
iλ)dD (4)

(Holland, 1990).

The set S2n that corresponds to the normal 2PL model consists of all arrays p in S such that

(3) and (4) hold, D = Φ, and

λ(θ) = θa− γ (5)

for some q-dimensional vectors a and γ with respective coordinates aj > 0 and γj for 1 ≤ j ≤ q.

For item j, the item discrimination is aj , and the item difficulty is γj/aj . The set S3n for the

normal 3PL model consists of all arrays p in S such that (3) and (4) hold, D = Φ, and

λj(θ) = log{[cj + exp(ajθ − γj)]/(1− cj)} (6)
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for some real aj > 0, cj in [0, 1), and γj . The 3PL case reduces to the 2PL case if each cj = 0.

The aj and γj can be interpreted as in the 2PL model, and cj is a guessing probability. In the

construction of the desired test statistic, the restriction set S3nk is considered for 1 ≤ k ≤ q in

which p in S3n is in S3nk if (3), (4), and (6) hold for D = Φ and for some aj > 0, cj > 0 in

[0, 1), and γj , 1 ≤ j ≤ q, such that cj = 0 if j 6= k. For use in comparison of estimated expected

penalties, it is also helpful to note that the set S1n for the normal Rasch model consists of p in

S2n such that (3) and(4) hold, D = Φ, and (5) holds for some q-dimensional vectors a and γ with

respective coordinates aj > 0 and γj for 1 ≤ j ≤ q and aj = a1 for j > 1.

1. The Test Statistic

To construct the desired score test statistic, consider an item k from 1 to q. Consider the null

hypothesis that the probability array p is in S2n, so that the normal 2PL model holds, against the

alternative that p is in S3nk. Let â and γ̂ be the respective maximum-likelihood estimates of the

vectors a and γ under the 2PL model. For 1 ≤ j ≤ q, let âj be coordinate j of â, and let γ̂j be

coordinate j of γ̂. To construct the test, consider the 3q-dimensional vector τ with coordinates

τj = aj > 0, τq+j = γj , and τ2q+j = cj in [0, 1) for 1 ≤ j ≤ q. Let pτ be the array in S3n such that

(3), (4), and (6) hold for p = pτ , and let H(τ ) = `(pτ ). Let

hi(τ ) = log pτ (Xi),

so that

H(τ ) =
n∑

i=1

hi(τ ).

The test statistic requires partial derivatives of H. Let hij(τ ) denote the partial derivative of

hi at τ with respect to τj , and let Hj(τ ) denote the partial derivative of H at τ with respect to

τj , so that

Hj =
n∑

i=1

hij .

Let τ̂ ∗ be the 3q-dimensional vector with coordinates τ̂∗j = âj , τ̂∗q+j = γ̂j , and τ̂∗2q+j = 0 for

1 ≤ j ≤ q. For item j, the score test statistic is Uj = H2q+j(τ̂ ∗). To evaluate Uj , let

λ̂(θ) = θâ− γ̂
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be the maximum-likelihood estimate of λ(θ) under the 2PL model. Let λ̂j be coordinate j of λ̂,

and let

V̂ =
q∏

j=1

[1 + exp(λ̂j)]−1

be the maximum-likelihood estimate of V for the 2PL model. Let

P̂j = [1 + exp(λ̂j)]−1

be the maximum-likelihood estimate of Pj under the 2PL model. Use of the chain rule of

differentiation and use of standard properties of exponential families (Berk, 1972) shows that

Uj = n−1
n∑

i=1

Uij ,

where

Uij =

∫
P̂−1

j (Xij − P̂j) exp(X′
iλ̂)V̂ φ∫

exp(X′
iλ̂)V̂ φ

.

Comparison of the standard asymptotic variance formula for n1/2Uj (Aitchison & Silvey,

1958) with standard regression formulas (Rao, 1973, pp. 267–268) shows that the asymptotic

variance σ2
j of n1/2Uj is the same as the mean-squared error from linear prediction of hi(2q+j)(τ )

by hik(τ ), 1 ≤ k ≤ 2q. Differentiation shows that, under the 2PL model with cj = 0 for 1 ≤ j ≤ q,

hij(τ ) = −
∫

(Xij − Pj) exp(X′
iλ)V φ∫

exp(X′
iλ)V φ

and

hq+j(τ ) =
∫

θ(Xij − Pj) exp(X′
iλ)V φ∫

exp(X′
iλ)V φ

for 1 ≤ j ≤ q.

It is a straightforward matter to verify that σ2
j is consistently estimated by the residual

mean-squared error s2
j from linear regression of Uij onto ĥik = hik(τ̂ ∗) for 1 ≤ k ≤ 2q, where

1 ≤ i ≤ n. The desired statistic for item j is then tj = n1/2Uj/sj . The statistic tj has

an approximate standard normal distribution under the 2PL model, with the approximation

increasingly accurate as the sample size becomes large. If pτ is in S3nj for some item j and if cj is

small, then `(S3nj) is well-approximated by `(S2n) + t2j/2 and Ĥ(S3nj) is well approximated by

Ĥ(S2n) + t2j/(2nq).
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2. Application to Data

In the example under study, n = 8, 686 and q = 45. The test statistics for each item are

shown in Table 1. Despite a substantial sample size, many items have score statistics compatible

with the normal 2PL model. For example, |tk| ≤ 2 in 15 cases. On the other hand, items not

compatible with the 2PL model are readily found, for 26 items have tk greater than 2, and 4 items

have tk less than -2. Even with allowances for multiple comparisons, 10 standardized values that

exceed 4 are very unlikely to occur by chance if the model is true.

It should be emphasized that the test statistics do not imply that the 3PL model provides a

description of the data that is much better than the description provided by the 2PL model. For

some perspective on this point, consider some estimated log-penalty functions that can be derived

for the data under study. The estimate Ĥ(S2n) for the normal 2PL model is 0.59157, while Ĥ(S3n)

for the normal 3PL model is 0.59074. This gain of 0.00083 is quite modest. For comparison, the

minimum estimated expected penalty per item for the normal 1PL model is 0.59639, so that the

gain from use of the normal 2PL rather than the normal one-parameter logistic (1PL) model is

0.00482. The estimated expected log penalty under the trivial model that all Xij , 1 ≤ j ≤ q, are

independent is 0.62467, so that the gain for the normal 1PL model over the independence model is

0.02828, a much larger gain than the gain from the normal 1PL model to the normal 2PL model.

Table 1
Results of Tests for Nonzero Guessing Probabilities

Score Standard Standardized
Item average error value

k Uk sk tk
1 0.00043 0.00054 0.80478
2 0.00132 0.00020 6.50359
3 0.00073 0.00189 0.38535
4 -0.00281 0.00128 -2.18717
5 0.00780 0.00271 2.87903
6 0.00086 0.00052 1.66437
7 0.00071 0.00026 2.73552
8 0.01491 0.00258 5.77798
9 0.01644 0.00279 5.88547
10 -0.00106 0.00076 -1.39806
11 0.00102 0.00034 2.99920

(Table continues)
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Table 1 (continued)

Score Standard Standardized
Item average error value

k Uk sk tk
12 0.01944 0.00408 4.76351
13 0.00463 0.00084 5.50615
14 0.01994 0.00395 5.05235
15 0.00026 0.00015 1.73915
16 0.00116 0.00047 2.48215
17 0.00192 0.00031 6.17770
18 0.00766 0.00101 7.57526
19 0.00546 0.00263 2.07236
20 0.00238 0.00036 6.69724
21 0.00028 0.00053 0.52986
22 0.00112 0.00294 0.38055
23 -0.00017 0.00038 -0.46052
24 0.00112 0.00029 3.84572
25 0.00116 0.00066 1.76433
26 0.00752 0.00468 1.60910
27 0.00052 0.00044 1.18942
28 0.00906 0.00269 3.36499
29 -0.00001 0.00045 -0.02107
30 -0.00046 0.00056 -0.82410
31 0.00049 0.00072 0.68124
32 -0.00086 0.00031 -2.76761
33 -0.00161 0.00065 -2.47247
34 0.00712 0.00174 4.09183
35 0.01303 0.00378 3.44932
36 0.01091 0.00354 3.08384
37 -0.00298 0.00137 -2.17524
38 0.00398 0.00112 3.55390
39 0.01109 0.00440 2.51879
40 0.00481 0.00147 3.27537
41 0.00463 0.00175 2.64318
42 0.00287 0.00115 2.48429
43 0.00444 0.00132 3.37090
44 0.00400 0.00207 1.92916
45 0.00695 0.00193 3.60106

3. Conclusions

The analysis here suggests that routine use of the normal 3PL model may not necessarily

be wise. For the data under study, the score test suggests that many guessing parameters are

not clearly different from 0 even if the normal 3PL model holds. In addition, the gain in data
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description from use of a 3PL rather than a 2PL model appears small. Given the much greater

computational difficulties associated with the 3PL model relative to those for the 2PL model, the

question must be raised whether proponents of the 3PL model can demonstrate cases in which

the gain from the 3PL model rather than the 2PL model is much larger than is observed here.

The issue of guessing parameters not clearly positive is especially important from a computational

perspective, for computations with the 3PL model are hardest when the guessing probabilities do

not clearly differ from 0 (Hambleton et al., 1991, p. 44).

An alternative approach to testing a 2PL versus a 3PL model would involve a likelihood-ratio

chi-square test statistic such as 2nq[Ĥ(S3n) − Ĥ(S2n)]; however, such a test involves two

complications. The 3PL model must be fit, and, even if the null hypothesis holds and the sample

size is large, the chi-square approximation is not satisfactory due to the requirement that the

guessing parameters cj be nonnegative.
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